Ordena zkia N° orden

PRUEBA DE ACCESO A CICLOS FORMATIVOS HEZIKETA ZIKLOETARA SARTZEKO PROBA

JUNIO 2013 / 2013KO EKAINA

GOI MAILAKO ZIKLOAK / CICLOS DE GRADO SUPERIOR ARLO ESPEZIFIKOA / PARTE ESPECÍFICA

QUÍMICA KIMIKA

Abizenak Apellidos		
Izena Nombre		
N.A.N. D.N.I	<u> </u>	
IKASLEAREN SINADURA Firma del alumno/a		

1. (6puntu) Jar ezazu hurrengo taulan, **MAYUSKULAZ**, galdera bakoitzarentzat aukeratu duzun erantzuna.

BETI DA ERANTZUN BAKARRA eta erantzun okerrek ez dute punturik kentzen.

1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.20

- **1.1.** 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s²4d⁴ konfigurazio elektronikoa duen elementuaren **kokapena** taula periodikoan honako hau da:
 - A) 5. Periodoa eta 16. Taldea
 - B) 4. Periodoa eta 12. Taldea
 - C) 5. Periodoa eta 6. Taldea
 - D) 4. Periodoa eta 4. Taldea
- **1.2.** 1s² 2s² 2p⁶ 3s² 3p⁴ konfigurazio elektronikoa duen X elementuak honako **ioiak** eratuko ditu:
 - A) X^{2+}
- B) X²⁻
- C) X⁴⁺
- D) X⁴⁻
- **1.3.** 1s² 2s² 2p³ konfigurazio elektronikoa duen elementuak 9 neutroi baditu, honako zenbaki atomiko eta zenbaki masiko izango ditu:
 - A) Z=7
- A=16
- C) Z=15
- A=8

- B) Z=15
- A=7
- D) Z=8
- A=15
- **1.4.** $_{15}^{31}X^{3-}$ kontuan hartuta esan dezakegu honako **Z** eta **eraketa** dituela:
 - A) Z=31 eta 31protoi, 34elektroi eta 16neutroi ditu
 - B) Z=15 eta 15protoi, 15elektroi eta 16neutroi ditu
 - C) Z=16 eta 15protoi, 15elektroi eta 31neutroi ditu
 - D) Z=15 eta 15protoi, 18elektroi eta 16neutroi ditu
- 1.5. Elektronegatibitatearen definizioa da:
 - A) Atomo batek elektroiak erakartzeko duen ahalmena
 - B) Atomo batek lotura kobalentea eratzeko duen ahalmena
 - C) Atomo batek bere lehen energia mailako elektroiak erakartzeko duen ahalmena
 - Atomo batek beste batekin konpartitutako elektroiak erakartzeko duen ahalmena
- 1.6. Gas nobleek:
 - A) Naturako loturarik sendoenak eratzen dituzte
 - B) Ez dute inongo loturarik eratzen oso egonkorrak direlako
 - C) Metalekin lotzen dira beti
 - D) Lotura kobalente sendoak eratzen dituzte

	1s² 2s² 2p° 3s² koı 1s² 2s² 2p ⁶ 3s² 3p ⁵ dira:				tuko			
,	A) Lotura ionikoar B) Lotura kobalen		C) Lotura metalikoarekin D) Ez dira lotuko					
	Substantzia batek padu, esan dezake			onte elektrikoa eroa	aten			
	A) lonikoa B) Kobalentea	C) Metal D) Datu	ikoa hauekin ezin da es	san nolakoa den				
	Substantzia baten daukagu:	2,108·10 ²⁴ molekul	a baditugu, honak	o mol kopurua				
	A) 1,27·10 ⁴⁸ mol 3) 3,5mol	C) 9,41m D) 1,5·10						
1.10.	. 2mol NH₃ ba	nditugu, bertan hor	nako masa dugu:	(<u>DATUAK</u> : N→14u	H→1u)			
A	a) 8,5g	B) 30g	C) 15g	D) 34g				
1.11. !	Disoluzio ba paditugu, lortutako	•			:			
A	3) 0,67	B) 0,4	C) 2,5	D) 5				
1.12.	Disoluzio ba nahi du:	ten solutuaren ma	sa-portzentajea %	60bada, honek esa	an			
E C	100g ura konbir100g disoluzioa100g disoluzioaAurreko hiru bai	n 60g ura daudela n 60g solutu daud	ela					
1.13.	Molaritatear	en unitateak haue	k dira:					
,	A) Ez du unitaterik	B) mol/L	C) molak	D) g/L				
1.14.	•H₂SO₄	auen izenak •NaCl dira hurrenez hurre	•NH₃ en:	•HCI ,				
	H ₂ SO ₄	NaCl	NH ₃	HCI				
A)	Az. sulfurosoa	Sodio Kloratoa	Metanoa	Az. klorikoa				
B)	Az. sulfurikoa	Sodio kloruroa	Amoniakoa	Az. klorhidrikoa				
C)	Az. sulfhidrikoa	Sodio kloruroa	Fosfina	Kloro hidruroa				
D)	Az. sulfurikoa	Sodio Kloratoa	Amoniakoa	Az. klorhidrikoa				

1.15.	Honako ekuazio kimikoa	C ₃ H ₈ (g) +	$O_2(g) \rightarrow$	CO ₂ (g) +	H ₂ O (g)
doituta, honela geratzen da:					

A)
$$C_3H_8(g) + 3 O_2(g) \rightarrow 3 CO_2(g) + 2 H_2O(g)$$

B) **2** C₃H₈ (g) + O₂ (g)
$$\rightarrow$$
 CO₂ (g) + **3** H₂O (g)

C)
$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$$

D) **2** C₃H₈ (g) + **5** O₂ (g)
$$\rightarrow$$
 3 CO₂ (g) + **4** H₂O (g)

1.16. Glukosaren formula molekularra
$$C_6H_{12}O_6$$
 da eta bere **formula enpirikoa** da:

- A) CHO
- B) C₂H₄O₂
- $C)(CH_2)_6O_6$
- D) CH₂O

(DATUAK: C→12u O→16u)

- A) %27,27 C %72,73 O
- C) %75 C %25 O
- B) %36,67 C %63,33 O
- D) %25 C %75 O

1.18.
$$H_2$$
 eta O_2 erreakzionatzen dute ura eratzeko. 100g H_2 kontsumitu bada eta 900g ura lortu badugu, erreakzionatu duen O_2 masa da:

- A) 1000g O₂
- B) 800g O₂
- C) 350g O₂
- D) 1700g O₂

- A) 20L
- B) 5L
- C) 0,05L
- D) 2L

1.20.
$$N_2 + 3H_2 \rightarrow 2NH_3$$
 ekuazio kimikoaren **esanahia** hau da:

- A) 1g N₂ erreakzionatzen du 3g H₂-rekin 2g NH₃ emateko
- B) 1molekula N₂ erreakzionatzen du 3 molekula H₂-rekin 2 molekula NH₃ emateko
- C) 1mol N₂ erreakzionatzen du 3 mol H₂-rekin 2 mol NH₃ emateko
- D) B eta C erantzunak zuzenak dira

2.	(2puntu) H ₂ S gaseosoak eta oxigenoak erreakzionatzen dute sufre dioxidoa
	eta ura eratuz ondoko ekuazio kimikoaren arabera:

$$2 H_2S (g) + 3O_2 (g) \rightarrow 2SO_2 (g) + 2 H_2O (g)$$

(DATUAK:
$$H \rightarrow 1u$$
 S $\rightarrow 32u$ O $\rightarrow 16u$ $R = 0.082 \frac{atm \cdot L}{mol \cdot K}$)

a) Zenbat **gramo SO**₂ lortuko dira 10L H₂S, baldintza normaletan neurtuta, erreakzionatzen badute?

b) Zenbat mol O₂ beharko ditugu 66g H₂O lortzeko?

c) Zenbat **mol H₂O** lortuko ditugu 10L O₂, 1,2atm presiopean eta 20°C-tan neurtuta, erreakzionatzean?

3. (2puntu) Kalkula ezazu azido klorhidrikoko (HCI) ur-disoluzio baten kontzentrazioa **(molaritatea)**, baldin eta honen 25mL baloratzeko sodio hidroxidotan (NaOH) 0,13M den disoluzio batetik 17,6mL behar izan baditugu.

 $(\underline{DATUAK}: H \rightarrow 1u \quad Cl \rightarrow 35,5u \quad Na \rightarrow 23u \quad O \rightarrow 16u)$

1. (6puntos) Señala en la siguiente tabla, *en MAYÚSCULAS*, la respuesta elegida para cada pregunta.

SIEMPRE ES RESPUESTA ÚNICA y las repuestas erróneas no quitan puntos.

1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.20

- **1.1.** La **ubicación** en la tabla periódica de un elemento cuya configuración electrónica es 1s² 2s² 2p6 3s² 3p6 4s² 3d¹0 4p6 5s²4d⁴ es:
 - A) 5° período y 16° grupo
 - B) 4º período y 12º grupo
 - C) 5° período y 6° grupo
 - D) 4º período y 4º grupo
- **1.2.** Un elemento X cuya configuración electrónica es 1s² 2s² 2p6 3s² 3p4 generará los siguientes **iones**:
 - A) X²⁺
- B) X²⁻
- C) X⁴⁺
- D) X⁴⁻
- **1.3.** Si un elemento cuya configuración electrónica es 1s² 2s² 2p³ tiene 9 neutrones, tendrá este número atómico y número másico:
 - A) Z=7
- A=16
- C) Z=15
- A=8

- B) Z=15 A=7
- D) Z=8
- A=15
- **1.4.** Teniendo en cuenta $^{31}_{15}X^{3-}$ podemos decir que su **Z** y su **composición** serán:
 - A) Z=31 y tiene 31 protones, 34 electrones y 16 neutrones
 - B) Z=15 y tiene 15 protones, 15 electrones y 16 neutrones
 - C) Z=16 y tiene 15 protones, 15 electrones y 31 neutrones
 - D) Z=15 y tiene 15 protones, 18 electrones y 16 neutrones
- 1.5. La definición de electronegatividad es:
 - A) La capacidad de un átomo para atraer electrones.
 - B) La capacidad de un átomo para formar enlaces covalentes.
 - C) La capacidad de un átomo para atraer los electrones de su primer nivel energético
 - D) La capacidad de un átomo para atraer los electrones compartidos con otro átomo
- 1.6. Los gases nobles:
 - A) Forman los enlaces más fuertes de la naturaleza
 - B) No forman ningún enlace porque son muy estables
 - C) Siempre forman enlaces con metales
 - D) Forman enlaces covalentes fuertes

1.7. Un elemento X cuya configuración electrónica es 1s² 2s² 2p6 3s² y un elemento Y cuya configuración electrónica es 1s² 2s² 2p6 3s² 3p5 se unirán de la siguiente forma:								
,	A) Con un enlace iónico C) Con un enlace metálico D) No se unirán							
	1.8. Si una substancia conduce la corriente eléctrica en cualquier estado físico, podemos decir que esta substancia es:							
A) lónica B) Covalente	,							
1.9. Si tenemos 2,108 número de mole		na substancia, tei	nemos el siguiente					
A) 1,27·10⁴⁸moleB) 3,5moles	s C) 9,41mc D) 1,5·10 ²							
1.10. Si tenemos	2moles de NH₃ tene	mos la siguiente	masa de NH ₃ :					
(<u>DA1</u>	<u>'OS</u> : N→14u H→1u)							
A) 8,5g	B) 30g	C) 15g	D) 34g					
	1.11. Si al preparar una disolución hemos mezclado 2moles de NaOH y 3moles de H ₂ O, la fracción molar del NaOH en la disolución obtenida será:							
A) 0,67	B) 0,4	C) 2,5	D) 5					
1.12. Si el porcer significa que:	ntaje en masa de solo	uto en una disolu	ción es del 60%, es	to				
 A) Hemos combinado 100g de agua con 60g de soluto B) En 100g de disolución hay 60g de agua C) En 100g de disolución hay 60g de soluto D) Las tres afirmaciones anteriores son falsas 								
1.13. Las unidad	es de la molaridad s	on:						
A) No tiene unida	ides B) mol/l	_ C) m	oles D)	g/L				
1.14. Los nombr •H ₂ SO ₄ son respectivamer	es de estos compue: •NaCl	stos ∙NH₃	•HCI,					
	1	NII I	1101					
H₂SO₄ A) Ac. sulfuroso	NaCl Clorato de sodio	NH₃ Metano	HCI Ac. clórico					
B) Ac. sulfúrico	Cloruro de sodio	Amoniaco	Ac. clorico Ac. clorhídrico					
C) Ac. sulfhídrico	Cloruro de sodio	Fosfina	Hidruro de cloro					
D) Ac. sulfúrico	Clorato de sodio	Amoniaco	Ac. clorhídrico					

	La sigui ijustada , que	iente ecuación química da así:	$C_3H_8(g) + O_2(g)$	\rightarrow CO ₂ (g) + H ₂ O (g)
E	3) 2 C ₃ H ₈ (g) C) C ₃ H ₈ (g) +	$egin{aligned} 3 \ O_2 \ (g) & ightarrow 3 \ CO_2 \ (g) + \ + \ O_2 \ (g) & ightarrow \ CO_2 \ (g) + \ 5 \ O_2 \ (g) & ightarrow 3 \ CO_2 \ (g) + \ 5 \ O_2 \ (g) & ightarrow 3 \ CO_2 \ (g) \end{aligned}$	3 H ₂ O (g) + 4 H ₂ O (g)	
1.16 .	La fórm es:	ula molecular de la gluc	osa es C ₆ H ₁₂ O ₆ y s	u fórmula empírica
A	A) CHO	B) C ₂ H ₄ O ₂	C)(CH ₂) ₆ O ₆	D) CH₂O
1.17.	La com	posición centesimal d	el CO ₂ es:	<u>′DATOS</u> : C→12u O→16u,
A	(A) %27,27 C	%72,73 O	C) %75 C %2	25 O
E	3) %36,67 C	%63,33 O	D) %25 C %7	'5 O
	,	el O₂ reaccionan para fo n obtenido 900g de agua	•	
A	A) 1000g O ₂	B) 800g O ₂	C) 350g O ₂	D) 1700g O ₂
1.19. d		olaridad de una disolució ecesario para tener 10m		olumen de
A	A) 20L	B) 5L	C) 0,05L	D) 2L
1.20.	El sig ni	i ficado de la siguiente e	cuación química N	$_2$ + 3H $_2$ \rightarrow 2NH $_3$ es:
	_			

- A) 1g de N_2 reacciona con 3g de H_2 para formar 2g de NH_3 B) 1molécula de N_2 reacciona con 3 moléculas de H_2 para formar 2 moléculas de NH₃
- C) 1mol de N₂ reacciona con 3 moles de H₂ para formar 2 moles de NH₃
- D) Las afirmaciones B y C son correctas

2. (2 puntos) El H₂S gaseoso y el oxígeno reacciona formando dióxido de azufre y agua, según la siguiente ecuación química:

$$2 H_2S (g) + 3O_2 (g) \rightarrow 2SO_2 (g) + 2 H_2O (g)$$

(DATOS:
$$H \rightarrow 1u$$
 S $\rightarrow 32u$ O $\rightarrow 16u$ $R = 0.082 \frac{atm \cdot L}{mol \cdot K}$)

a) ¿Cuántos **gramos de SO**₂ se obtendrán si reaccionan 10L de H₂S, medidos en condiciones normales?

b) ¿Cuántos moles de O2 necesitaremos para obtener 66g de H2O?

c) ¿Cuántos **moles de H₂O** obtendremos si reaccionan 10L de O₂, medidos a 1,2atm de presión y 20°C?

3. (2 puntos) Calcula la concentración (**molaridad**) de una disolución acuosa de ácido clorhídrico (HCl), si para valorar 25mL de dicha disolución hemos necesitado 17,6mL de una disolución 0,13M de hidróxido de sodio (NaOH).

(\underline{DATOS} : $H \rightarrow 1u$ $CI \rightarrow 35,5u$ $Na \rightarrow 23u$ $O \rightarrow 16u$)